
  

TECHNICAL 
DESIGN 
DOCUMENT 
PCG Cave Generation Tool 

Jack Slaski 
22013671   



1 
 

Contents 
Glossary ............................................................................................................................ 1 

1. Research ....................................................................................................................... 2 

2. Introduction .................................................................................................................... 2 

2.1 Purpose ................................................................................................................... 2 

2.2 Scope....................................................................................................................... 2 

2.3 Goals ....................................................................................................................... 3 

3. System Architecture ....................................................................................................... 3 

3.1 Procedural Generation Core .................................................................................... 3 

3.2 Unreal Engine Integration......................................................................................... 5 

3.3 Data Storage ............................................................................................................ 5 

4. Functionality and Features ............................................................................................ 5 

4.1 Cave Generation ...................................................................................................... 5 

4.2 Loot Placement ........................................................................................................ 5 

4.3 Customisation and Control ....................................................................................... 6 

5. Implementation Details .................................................................................................. 7 

5.1 Programming Language ........................................................................................... 7 

5.2 Data Structures ........................................................................................................ 7 

5.3 Optimisation Techniques .......................................................................................... 8 

6. Testing and Evaluation ................................................................................................... 8 

6.1 Unit Testing .............................................................................................................. 8 

6.2 Performance Testing ................................................................................................ 9 

6.3 Usability Testing ....................................................................................................... 9 

7. User Guide .................................................................................................................... 9 

7.1 Blueprint Setup ......................................................... Error! Bookmark not defined. 

7.2 Blueprint Use ............................................................ Error! Bookmark not defined. 

Bibliography..................................................................................................................... 10 

 

Glossary 

GPU – Graphics Processing Unit 

PCG – Procedural Content Generation 

UE5 – Unreal Engine 5 

CA – Cellular Automata  



2 
 

1. Research 

A realistic cave can be generated by using Perlin noise-based algorithms. Perlin noise is a 

gradient noise function that generates natural, flowing features that are useful for creating 

terrains, textures, and, in the case of this project, cave formations. This could work by 

layering different frequencies of Perlin noise to create natural look cave structures. 

According to Perlin (1985), "Noise() is a scalar valued function which takes a three 

dimensional vector as its argument” making it ideal for creating large scale and complex 

patterns with a more natural look such as a cave formation. Another approach to cave 

generation could be using the Drunkard’s Walk algorithm. This algorithm creates natural-

looking passageways and chambers by carving out the cave in complete random directions. 

The randomness can be altered by adding rules and constraints such as avoiding dead ends 

or ensuring connections between the chambers. This results in another organic structure 

that is a lot more linear and winding than outputs from the other two methods. The final way 

this project has explored to generate a realistic cave structure is Cellular Automata. Cellular 

Automata is a “discrete model of computation” designed to cause a grid of cells to evolve 

over multiple iterations, mimicking the layout of a cave or dungeon by having each cell exist 

“in one of two states: empty or rock.” (Yannakakis & Togelius, 2018). The evolution of the 

grid is based on rules that the user defines. In ‘Conway's Game of Life’, the first rule dictates 

that if a cell is alive and has 2 or 3 live neighbours, it stays alive, otherwise, it dies. The other 

rule is that if a cell is dead and has exactly 3 live neighbours, it becomes alive. Using this 

method to generate a cave could give an output similar to this picture from Kyzrati (2014):  

 

Figure 1. Cellular Automata Map 

(from Mapgen: Cellular Automata - Cogmind / Grid Sage Games) 

2. Introduction 

2.1 Purpose  

The purpose of this tool is to solve the problem of creating a cave like structure and 

environment in Unreal Engine 5. This tool will automate the process of creation of a cave 

structures by using procedural generation whilst also allowing for other features such as a 

structure seed, random corridor and room generation, whilst also having a detailed layout of 

custom settings to allow users to customise the output of this tool to their exact liking. 

2.2 Scope  

The PCG tool will focus on generating the following types of content: 

https://www.gridsagegames.com/blog/2014/06/mapgen-cellular-automata/


3 
 

 Organic Cave Structure: Generation of a cave structure with an array of vast and 

winding open areas. 

 Corridors and Rooms: Creation of completely customisable interconnected 

corridors and open room chambers within the cave. 

 Loot: Placement of loot actors throughout the cave. 

2.3 Goals 

The goals of this PCG tool include: 

 Increase Development Efficiency: Provide a highly intuitive tool that efficiently 

procedurally generate realistic caves to result in a reduction in manual work that 

creating a cave structure would require. 

 High Level of Customisability:  Offer multiple adjustable settings such as structure 

size and scaling, structure seed, room and corridor properties, to allow for complete 

customisability of the cave’s environment. 

 Modularity: A high range of modularity within the project allowing for range of 

different outputs of the structure. 

2.4 Elements 

2.4.1 Must Have 

This project must have an output that generates an accurate cave like structure containing a 

contrast of vast open areas as well as thin and winding chambers and corridors. This project 

also must have a detailed settings panel allowing for complete control over the generated 

structure. 

2.4.2 Should Have 

This system should have rooms and corridors throughout to ensure there isn’t a lack of 

content and allow for connections between different parts of the cave structure. This project 

should also have loot placed inside of different parts of the cave structure. 

2.4.3 Could Have 

This project could have a seed-based generation system that allows for users to return to a 

specific generation of the structure. This project could also have some sort of pathfinding 

throughout to ensure that certain chambers and pathways are connected. 

3. System Architecture 

3.1 Procedural Generation Core 

3.1.1 Cellular Automata 

This system uses cellular automata rules for generating the base structure of the cave. The 

structure of the cellular automata follows similar principles to Conway's Game of Life. The 

cave generation starts by creating a grid of cells where each cell is either filled (true) or 

empty (false). The initial state of each cell is determined based on a fill probability influenced 

by a random or chosen seed. Then, cellular automata rules are applied for a set number of 

iterations to generate more natural cave formations. The default CA rules in this system are 

that ‘If a cell has less than 4 neighbouring cells that are alive, it becomes empty’ and ‘If a cell 

has 5 or more neighbouring cells that are alive, it becomes alive’. These rules are then 

applied over 6 iterations to ensure the most accurate cave generation. Below is a small 



4 
 

diagram I have created to give some visual representation of the systems default cellular 

automata rules and how they work. 

 

Figure 2. Cellular Automata Rules 

3.1.2 Random Corridor Generation 

Randomly placed corridors are added to allow for connections and pathways to open up 

within different areas of the cave. This is done randomly using random corridor lengths and 

directions, influenced by the tools detailed settings to ensure a high level of customisability. 

These settings also include options for the corridors thickness, type, and amount. 

3.1.3 Random Room Generation 

This tool can create randomly placed rooms of randomly chosen sizes within the cave 

system. These rooms have the option to contain a blueprint actor of the user’s choice 

making it useful for loot, objective or start and exit rooms. This part of the system is also 

highly customisable with room size (including minimum and maximum values), loot height, 

and number of rooms. 

3.1.4 Seed-Based Random Generation 

The generation process begins by initialising a seed value, either provided by the user or 

generated randomly. The seed is then used to initialise Unreal Engine's random number 



5 
 

generator (FMath::RandInit), which guarantees repeatable cave layouts when the same 

seed is used. 

3.2 Unreal Engine Integration 

3.2.1 Blueprint Integration 

The vertical prototype of this system is built in Unreal Engine 5’s blueprint system. However, 

the final polished prototype will be converted to C++ so that the system will be much more 

efficient. Therefore, the blueprint integration of the system is the use of a blueprint actor 

derived from a C++ class. 

3.2.2 C++ API 

 Classes and Functions: The core cave generation logic is implemented in C++ 

using Unreal Engine's APIs. This allows fine control over the cave structure and the 

random generation process. 

 Mesh Components: Static mesh components are added for filled grid cells, 

representing the cave's geometry. 

 FMath: This project uses FMath functions throughout including RandRange, RandInit 

and more. 

3.2.3 Data Exchange 

The generated cave elements, such as room loot and corridor structures, are dynamically 

generated during runtime and are attached to the scene component to make sure there is a 

much easier cleanup process. 

3.3 Data Storage 

3.3.1 Configuration Files 

This project uses a large amount of configuration parameters such as grid size, corridor 

count, room count, fill probability, and seed. These are stored as configurable properties, 

allowing users to customise their cave generation settings. 

4. Functionality and Features 

4.1 Cave Generation 

4.1.1 Cellular Automata  

The cellular automata rules and functionality are highly customisable in this system with an 

in-depth category of settings that allow for changes in the number of iterations, fill probability 

and rules. These settings allow for a completely customisable CA experience. 

4.1.2 Corridor and Rooms 

The system also generates corridors and rooms: 

 Corridors are randomly generated between different parts of the cave, creating 

pathways that link otherwise isolated areas. 

 Rooms are added randomly within the cave structure, providing open spaces that 

may contain loot or serve as objective locations. 

4.2 Loot Placement 

Loot is spawned in the middle of each generated room if room loot is enabled. The 

placement of loot is cantered in the rooms and then influenced by the configuration 



6 
 

parameters for room size and spacing. Loot placement can be customised with settings 

allowing for loot height, and spawning to be changed as well as the type of actor that the loot 

is. 

4.3 Customisation and Control 

This system has large amount of customisation to allow for users to refine the structure to 

however they please. The customisation means that the structure of the system can be 

completely changed. The settings that can be edited are as follows: 

Grid Settings 

 Grid Seed: Specifies the seed value for generating the grid. If set to 0, a random 

seed will be generated. 

 Seed Lock: Determines whether the seed is locked or not. If true, the generator will 

use the provided seed value, if false a random seed will be generated. 

 Grid Size Settings 

o Grid Size X: Defines the number of cells along the X-axis in the grid. 

o Grid Size Y: Defines the number of cells along the Y-axis in the grid. 

o Grid Scale 

 Grid Scale Z: Sets the scale for the grid along the Z-axis, determining 

the height of the generated grid. 

o Cell Spacing 

 Cell Spacing X: Sets the spacing between cells along the X-axis. 

 Cell Spacing Y: Sets the spacing between cells along the Y-axis. 

 Grid Generation 

o Cellular Automata 

 Fill Probability: Determines the initial fill probability of each cell being 

filled (alive).  

 Number of Iterations: Specifies the number of times the cellular 

automata rules are applied to modify the grid. 

 Empty Neighbour Threshold: If a cell has fewer than this number of 

neighbours that are alive, it becomes empty. 

 Fill Neighbour Threshold: If an empty cell has this number or more 

neighbours that are alive, it becomes alive. 

o Corridors 

 Number of Corridors: Specifies the total number of corridors that will 

be generated. 

 Corridor Length Min: Sets the minimum length of the generated 

corridors. 



7 
 

 Corridor Length Max: Sets the maximum length of the generated 

corridors. 

 Corridor Thickness: Determines the thickness of the corridors. For 

diagonal corridors, the thickness will be increased by 1. 

 Allow Straight Corridors: Allows the generation of straight corridors in 

the grid. 

 Allow Diagonal Corridors: Allows the generation of diagonal corridors 

in the grid. 

o Rooms 

 Allow Room Spawning: Determines whether rooms should be 

generated or not. 

 Number of Rooms: Specifies the number of rooms to be generated. 

 Room Size Minimum: Defines the minimum size of each generated 

room. 

 Room Size Maximum: Defines the maximum size of each generated 

room. 

 Allow Room Loot: Determines whether loot should be spawned inside 

the rooms. 

 Loot Height: Specifies the height at which loot should be spawned 

inside the rooms. 

 Room Loot: Defines the type of object to be spawned inside the 

rooms. 

 Grid Mesh 

o Grid Mesh: Specifies the static mesh that is used for each grid cell. 

o Grid Material: Sets the material to be applied to each cell in the grid. 

5. Implementation Details 

5.1 Programming Language 

The tool is implemented using C++ to take full advantage of Unreal Engine's native 

performance, as well as its advanced procedural generation capabilities. 

5.2 Data Structures 

 TArray: Used for storing the grid's cell states, room loot actors, and mesh 

components. 

 Static Mesh Components: Each filled cell in the cave is represented using a static 

mesh component to visually display the generated structure. 



8 
 

5.3 Optimisation Techniques 

 Conversion To Code: This system was originally created using UE5’s blueprint 

graph. However, due to poor performance of this system in the blueprint graph this 

system was then converted to C++ code in unreal engine. 

 Seed Initialisation: The use of seed-based initialisation allows repeatable 

generation, which aids in debugging and testing. 

 Component Pooling: Mesh components and actors are destroyed and cleared 

between generations to optimise memory usage and avoid accumulation of unused 

objects. 

6. Testing and Evaluation 

6.1 Unit Testing 

Due to how in depth this projects settings and customisability is, individual unit testing is a 

relatively smooth operation. Within this system, there are a couple of ways to test the grid 

generation. One way (although it being slightly more technical), is that the cell states bool 

array can be made public and “VisibleAnywhere” or “EditAnywhere”. This makes it so that 

when the grid has been generated, the table of bools for the cell states array is visible so 

each cell state can be tested, checked, and then verified. Another way to test the grid 

generation is to simply change and update the settings and cellular automata options and 

view the updated output. By spawning two grids next to each other with different settings 

they can be compared and contrasted to test the different settings and ensure that they are 

working as intended. Testing both the room and corridor generation logic is also simple. 

Firstly, set the grid fill probability to “1.0”, this will ensure that the entire grid fills out with 

cubes which in turn causes the cellular automata rules to not be applied. Then, by having a 

full grid, both corridor and room generation features can be tested as they will become 

obvious as the only holes in the grid will be from the corridors and rooms. This then means 

that they can be easily checked and verified to ensure that they are correct. 

 

Figure 3. Room and Corridor Testing 



9 
 

6.2 Performance Testing 

For performance, the system works well and as intended. The main performance issues this 

system has is the loading and buffering the system has when generating the grid or 

changing the grids variables. When changing values in the system there is a slight buffering 

time when whilst the values are updating. Furthermore, depending on the size of the grid, 

using the generate button can cause more buffering. For smaller grids such as 50x50 grids 

or 150x150 grids there is around a 1-2 second buffering time, however for larger grids this 

time increases. However, this buffering was way worse in the blueprint version of the system 

which is why the conversion to code improved the systems efficiency. 

6.3 Usability Testing 

The tool itself does not use a custom user interface or editor utility widget as it largely does 

not need to. As there is a vast amount of options and settings that can be changed, with the 

majority of the values being bools, floats, and integers that do not need maximum values. 

The UE5 details panel provides everything that this system needs. It allows for solid 

categorization between the different aspects of the system as well as good intuitive design. 

In terms of other usability, the system works well and as intended. 

7. User Guide 

There are two ways in which this system can be used including by importing the class itself 

into another project, or by opening the provided project. To import the class to another 

project, see ‘7.1 Class Import and Setup’. If using the system in the project provided, see 

‘7.2 Project Setup’. For instructions on how to use the blueprint, see ‘7.3 Blueprint Use’. 

7.1 Class Import and Setup 

For this system to be used on another project, a user must first import the C++ class titled 

“PCGCaveGenerator” to that project. Once imported, find the C++ class located in the files, 

right click on it and then choose “Create a Blueprint class based on PCGCaveGenerator”. 

This creates a blueprint of the class so that it can be used and edited in the engine, this also 

means means that no additional plugins, materials or models are required for this system. 

 

Figure 4. Creating Blueprint Class 

 



10 
 

7.2 Project Setup 

To use the provided project, either create a new level, or open 

‘Content/PCG/PCGBlankWorld’. Once in a level, drag the blueprint titled 

‘BP_NewPCGCave’, located ‘‘Content/PCG/…’, and position it using the translation gizmo. 

The gizmo will be located at the top right of the structure. Once positioned and setup, the 

blueprint is ready for use. 

7.3 Blueprint Use 

Use of this blueprint system is very simple. Once having the blueprint in a level, highlight it 

and go to the details panel to see the controls and settings for this system under the 

category of “Grid Settings”. 

 

Figure 5. Grid Blueprint Settings 

This provides all of the controls needed to use this system and as well as all of the detailed 

settings (A description of each setting is in section ‘3.3 Customisation and Control’ in this 

document). 

To generate the grid, simply click the “Generate Grid” button and by default a 150x150 grid 

will be generated with a random seed. Using the default settings will result in an accurate 

cave generation, however the settings can all be changed and edited to give a different or 

more refined output.  

To remove the grid, just click the “Remove Grid” button. This should also be done before 

deleting the blueprint in order to make sure that all parts of the system are deleted and 

removed from memory. 

Bibliography 

Perlin, K., 1985. An image synthesizer. ACM Siggraph Computer Graphics, 19(3), pp.287-

296. 

Yannakakis and Togelius (2018) 'Artificial Intelligence and Games' available 

at: https://gameaibook.org/book.pdf (Accessed 10/25/2024) 

Kyzrati (2014) ‘Mapgen: Cellular Automata’ available at: Mapgen: Cellular Automata - 

Cogmind / Grid Sage Games (Accessed 10/25/2024) 

https://gameaibook.org/book.pdf
https://www.gridsagegames.com/blog/2014/06/mapgen-cellular-automata/
https://www.gridsagegames.com/blog/2014/06/mapgen-cellular-automata/

	Glossary
	1. Research
	2. Introduction
	2.1 Purpose
	2.2 Scope
	2.3 Goals
	2.4 Elements
	2.4.1 Must Have
	2.4.2 Should Have
	2.4.3 Could Have


	3. System Architecture
	3.1 Procedural Generation Core
	3.1.1 Cellular Automata
	3.1.2 Random Corridor Generation
	3.1.3 Random Room Generation
	3.1.4 Seed-Based Random Generation

	3.2 Unreal Engine Integration
	3.2.1 Blueprint Integration
	3.2.2 C++ API
	3.2.3 Data Exchange

	3.3 Data Storage
	3.3.1 Configuration Files


	4. Functionality and Features
	4.1 Cave Generation
	4.1.1 Cellular Automata
	4.1.2 Corridor and Rooms

	4.2 Loot Placement
	4.3 Customisation and Control

	5. Implementation Details
	5.1 Programming Language
	5.2 Data Structures
	5.3 Optimisation Techniques

	6. Testing and Evaluation
	6.1 Unit Testing
	6.2 Performance Testing
	6.3 Usability Testing

	7. User Guide
	7.1 Class Import and Setup
	7.2 Project Setup
	7.3 Blueprint Use

	Bibliography

